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ABSTRACT

The Byzantine Generals problem involves a system of N processes, t of which may be unreliable.

The problem is for the reliable processes to agree on a binary value sent by a "general", which may

itself be one of the N processes. If the general sends the same value to each process, then all reliable

processes must agree on that value, but in any case, they must agree on the same value. We give an

explicit solution for N = 3t + 1 processes, using 2t + 4 rounds and O(t3 log t) message bits, where I

bounds the number of faulty processes. This solution is easily extended to the general case of N >

3t + 1 to give a solution using 2t + 5 rounds and O(tN + T31og t) message bits.

1. Introduction

The Byzantine Generals problem (or, the problem of "assuring interactive consistency") is

li...' defined in [PSLI. It is assumed that there are N isolated processes, of which at most t are faulty. The
processes can communicate by means of two-party messages, using a medium which is reliable and

of negligible delay. The sender of a message is always identifiable by the receiver. The problem is for
the nonfaulty processes to agree on a binary value sent by a "general", which may itself be one of the

N processes. If the general sends the same value to each process, then all reliable processes must

agree on that value. If the general sends different values to different processes (i.e. the general is

"faulty"), then all reliable processes must agree on some value.

Algorithms for solving this problem are surprisingly difficult to devise. The difficulty is that faulty

processes can provide conflicting Information to different parts of the system. This fact causes

simple solutions based on majority voting to fall, since a faulty process could cause two nonfaulty

processes to decide that the majority voted In opposite ways.

An efficient solution to the Byzantine Generals problem would be a valuable tool for the

construction of reliable computer systems. Such systems should be able to handle malfunctioning

components which provide conflicting Information.

The algorithms In the earliest papers on this problem [PSL, LSP] seem to be quite expensive, both

In terms of number of message bits (exponential In t, the number of faults) and time (t + 1 rounds of

synchronous message exchange). This Is true even in the presence of certain authentication

capabilities. It Is shown in [FL), in the simplest case of non-authenticated communication, that t1I

rounds are optimal, for worst-case algorithm behavior. This lower bound result is extended In [OS,

OLM] to the case in which arbitrary authentication capabilities we allowed. Thus, there is no way to

improve on the number of rounds In the arlier algorithms.
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The more serious drawback of the earlier algorithms is the large amount of message traffic which

is sent among the processes. There is essentially no structure to the information which is exchanged

in those algorithms; processes repeatedly broadcast everything they know, and then apply certain

decision functions to the final results. It Is obviously desirable to discover ways of summarizing the

information, only sending what is relevant.

The first solution which requires an amount of communication polynomial in the number of faults

appears in [DS]. The authors summarize the information in clever ways, and obtain a solution which

uses 4t + 4 rounds and O(n4 log n) message bits. (Their solution can easily be modified, using the

same trick we use in Section 3., to use 4t + 5 rounds and O(tN + t4 log t) message bits.) 4

In the present paper, we use many of the ideas of [DS], plus several new ones, to devise another

solution with polynomial communication. Our solution uses only 2t + 5 rounds, and O(tN + t3 log t)

message bits, thus giving important savings both in time and amount of communication. In addition,

we think that the new algorithm s considerably simpler than the algorithm of [DS].

We do not know if our algorithm is optimal; in particular, we have so far been unsuccessful at

removing the factor of 2 which separates the number of rounds used by our algorithm from the known

minimum.

2. The Model

Let [NJ denote (1,...,N).

We model a Byzantine Generals algorithm as a synchronous system of automata. Such a systm

.S Is described by the following:

N -- the number of processes;

0 = (Q",...QN) -- the state sets of each of the N processs;

qO u (qO,...,qOM) - initial states for each process Indicating the general's value Is "0",

q1 a (ql ,...,ql N) -- Initial states for ach processndatctlng the general'a value is 'I",

F. (F1 ,...,FN), where each F, Q Q1.. accepting stee for each proces

M , (M1,...,MN) -. the sets of possde massages each process might senid,

64: 1 " MI, tj E IN) -- the message generation functionk

R&M -
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(where p,, describes messages sent from process i to process j)

and

r, :0x I M X...X xMN --# 01, j C [N]--the state transition functions.

* Let T C [NJ, and let v E {0.1,?). (T is the set of rfabLft processes or "truthtellers", and v Is the
general's value. A value of 'T' indicates that the general himself is unreliable.) A sequence of state
vectors q(0), q(1), ..., q(R) is an R-,Liuzd (,v)cam dafi if there exist messages m1 (r) E Mi QE

[N, 0:5<R, such that

1. INITIALIZATION:
If v = 0Othen q(0) = qO.
Itfv = 1lthen q(0) = q 1.
If v - ? then q3(O) E (qOi, q11I for all i E [NI.

2. CORRECT MESSAGES:
For each r, 0 : r < R and each I E T, j E [N], m1i(r) =&,qr)

3. CORRECT TRANSITIONS:
For each r, 0 -- r < R, and each J ET, q1(r + 1) a r1(q1(r), m 1p() 1 , mNJ(r)).

We say that S soles the Byzantine Generals problem in R rounds If for every T C [N] with ITI N-t,
every v E {0,1,?), and every R-round (T,v)-computation q(O),...,q(R), the final state vector q(R)

satisfies the following:

1. AGREEMENT: If i~j E T, then q,(R) E F1 1ff q1(R) E F~.

H2. VALIDITY: If v *'7,then for allIE T, q(R) EFj Wfvu 1.

Intuitively, a step or LgJod of the computation taesm place In two phases. First, every process
sends a message to every other. Secondly, each process changes stats based on its old state and the
messages it receives. Unreliable processes can send arbitrary messages, so there are In general
many possible computations, all of which must satisfy the agreement and validity conditions above.

We assume about the general only that kt Is a poealbly-unrellablo data source that communicates a
(binary) value to each of the N processes In the system before the algorithm begins. Thus, the
general might be one of the N processes, or It might be a sensor or I/O device that all processes can
read. In our formalization, the genrals value Is encoded by each process's star state. In other
theaments of this problem, the gewnea Is Identilled with one of the N processes which carry out t

algorithm, and each other process start In the same state regardless of the genieral's value. Our
version Is slightly stronger, for a soluio to our problem solves the other version by simply adding an
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initial round in which the general sends his value to each other process. The converse, however, is

not in general true, for an algorithm might make use of the fact that at most t.1 unreliable processes

remain when the general has been determined to be unreliable and is a known one of the processes.

3. A SimplifIcation

We give an explicit construction for the case N = 3t + 1. To handle the case of N > 3t + 1, just run

the given algorithm on any subset A with IAI = 3t + 1. After the last round, a designated subset B C A,

IBI = 2t + 1, broadcasts its answers to all N processes. Since all the (t + 1 or more) reliable processes

in B agree, a simple majority vote gives all the other reliable processes consistent answers. This takes

only one additional round and O(tN) additional message bits above and beyond the basic algorithm.

4. Basic Solution

Now assume N = 3t + 1. Let LOW = t + 1 and HIGH = 2t + 1. We describe a system S.

The only pieces of information sent in messages are process indices and one special value '
Formally, let I (the set of messaae U&i)en = ' U IN]. Messages are sets of message items; thus,

each Mi - 2O.

A process state consists of a number (representing the current round) together with a set of "data

entities". A data entity Is either the single value 0 or 1 (representing a value of 0 or 1 received from

the general) or else a pair consisting of a message item and a process from which that message Is

received. Each process remembers the initial value and all the messages it has ever received from

any process. Formally, a dt etit Is an element of D = (0,1) U (I X [N]). A pcsta q is a pair

(data(q), round(q)), where data(q) Q D and round(q) E N. That i, each 0i - 2D X N. The initial states

are q01 - ((0),0) and q1i - ({1),0). The transition function simply records all new messages

received, together with their senders, and increments the round number. That is,

(data(q) U {(x,j) E D I x E min), round(q) + 1).

Thus, the data component of the process state behaves "monotonically".new data entities can get

added during the course of an execution, but nothing Is ever deleted.

We require some notation for characterizing process stats. Let q be any process state end

let x E I. We define
Wx(q) - a C (NI I (x,j) C data(q)},

the wtueau to x, and we let W(q) = jW(l. We deflne
C(q) (k C [N) I %(q) > HIGH),
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the confirmed processes, and we let c(q) = JC(q)j. Process i inittateg in q if either

II. 1 E data(q),

12. c(q) > LOW + rround(q)/211, or j
13. 1 E W.(q).

Process i commits in q if c(q) > HIGH.

The heart of the algorithm is the message generation function. The function is defined to be
monotonic in the data component of the state- more data entities can only cause more messages to

be sent. Since the data component of the state behaves monotonically, this definition implies that any
message, once sent, will be sent on all subsequent rounds. This is an obvious inefficiency which is

removed by a trivial optimization. (See Section 6.) It is useful to describe the algorithm in this way,

however, since the monotonic algorithm is easier to reason about than its optimized version.

We define pij(q) to be the smallest set satisfying the following rules:

Mi. (Initiation) If i initiates in q, then'' E ijxj(q).

M2. (Direct witness) W.(q) C_ F(q);

M3. (Indirect witness) If wk(q) > LOW, then k E /ij(q) for each k E (NJ.

Finally, F, - {q EQ i commits In q).

Theorem 1: Let R = 2t + 4. Then S solves the Byzantine Generals problem in R
* rounds.

The correctness of this algorithm is somewhat subtle and Is proved in the next section. However,

the following intuition should help the reader's understanding.

During the course of execution, processes Initiate from time to time. This means that they know

that the general has sent a "I" to some reliable process and that they are proposing to accept. A

process announces Initiation by sending a'*' to the other procesme.

A process receiving a '0 becomes a witness to the sending process's Initiation. A process can

become an "indirect" witness by hearing about it from at least LOW other processes, since then at

least one of them must be reliable. In either case, it broadcasts that fact to ail processes, including

Itself. (The sending process will thus record itself as a witins at the same time as all other processes

do.)
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A process receiving a message item k E [N] from process j records the fact that j claims to be a

witness k. When at least HIGH distinct j's claim to be witnesses to k, then k is confirmed. The

confirming process then knows one of two things must be true: Either k is reliable and indeed has

initiated, or k is unreliable but nevertheless has told at least LOW reliable processes that it had

initiated.

A process initiates on the first round if it receives a "1" from the general. Thereafter, it can only
initiate if it has confirmed sufficiently many initiations by other processes. This threshold number for

initiation starts out at LOW and increases by one every two rounds until it reaches HIGH. By that time,

either at least LOW reliable processes will have initiated or it is no longer possible for a reliable

process to initiate. In the former case, after three more rounds every reliable process will commit. In

the latter case, no reliable process can commit. The delicate part of the algorithm concerns these last

two facts; namely, initiating and committing are easy enough so that as soon as LOW reliable

processes initiate, then an avalanche begins which results in all reliable processes initiating and

committing a small number of rounds later. On the other hand, committing is hard enough so that no

process commits in the last three rounds except as a result of an avalanche started earlier.

5. Proof of Correctness

The following lemmas prove Theorem 1 and establish the correctness of the algorithm. All refer to

a fixed (T,v)-computation q(0), ..., q(R), R = 2t + 4, with associated messages mi4(r), ij E [N], 0 < r <

R.

Lemma 2 formalizes the monotonicity properties of process states.

Lemma 2: Let 0 r' : r :5 R, i E T. Then Wx(qi(r')) C Wx(qi(r)) for all x E I, and
C(q,(r')) C C(qj(r)). Moreover, if i initiates (commits) in q(r'), then i initiates (commits) in
qi(r).

Proof: If r' = r, then there Is nothing to prove. So assume r' < r. Monotonicity of W and
C are obvious; hence, if i commits in q(r'), then it commits in q,(r). Suppose I initiates in
q,(r'). Then '*' m1 (r'), so i E W.(q(r' + 1)), and by monotonicity of W, i E W.(q(r)). Thus,
i initiates in q1(r) by Rule 13.

The next lemma says that whenever a truthteller initiates, it Is confirmed at all truthtellers two

rounds later.

Lemma 3: Let i, j E T. If I Initiates In q(r), 0 r < R-2, then i E C(q,(r + 2)).

Proof: Let k E T. Then i E W.(qk(r +1)) by Rule MI. Similarly, k E 'N(q1(r + 2)) by Rule
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M2. Hence, W1(q1 (r + 2)) T. The lemma follows since ,rT HIGH.

0

Next, we show that whenever all truthtellers initiate, they all commit two rounds later.
Lemma 4: Let 0 < r < R-2. If all I E T initiate in q,(r), then all i E T commit in qi(r + 2).
Proof: By Lemma 3, 1 E C(qi(r + 2)) for all IE T; hence, c(q1(r + 2)) HIGH.

The next lemma describes some information that the views of different truthtellers; at the same
round must have in common.

Lemma 5: Let ij,k C T, x E 1. Then k C Wx(cq,(r)) iff k C W (q,(r)).
Proof: Follows from an easy induction on r using the fact that reliable processes

always broadcast their messages to every process.

Next, we show the Important fact that any process which gets confirmed at one truthteller, will be
confirmed at all truthtellers one round later.

Lemma 6: Let0.-5r <R-1,J, k.ET. IfI E C(q k(r)) then ICE C(q1(r + 1)).
Proof: Since i C C(qk(r)), there is a set A C.Tn flw1(cj.(r)) with JI = LOW. Let J' C

T. Then by Lemma 5, A C W1(q1.(r)). Thus, 1 E mi (r), by Rule M3. Hence, FEC W1(qI(re 1)0).
Thus, I C CQq (r + 1)).

Lerma 7: Let 0 - r( R, l, j C T. It I commits in q1(r),thenj commits In q1 r + 1).
Proof: by Lemma 6.

The next lemma says that If there are sufficiently many witnesses for a truthteller, then that

ei truthteller has actually Initiated.
Lemma 8:. Let ij C T. If w,(%,(r)) 2! LOW, then r 2 2 and I initiates in qj(r.2).
Proof: We proceed by Induction onr. Suppose the Wema itrue for all rr, for r k ,

and suppoe w1(qi(r)) kLOW. Then there issome kCETlW(q(r)). Elut then r 2 1 @rWIdE
mkJ (r-1), and thisIs ether because of M2 orM3. IfIt Isbecaueof M2, thenl ICW.(qk(r.1)),
fo that r 2:and'*'m~(r2)and hnceIntatsn q,(r-2). If itIs beasuse of M3,Ow
w,(qk(r..I)) 2: LOW. Then by Induction, r-1 2: 2 and I Initiates In q#(r3). AppliatIon of
Lemma 2 shows that I initate* In q,(r-2).

E0



LYNCHSAMPLE.MSS; 23 February 1982 at 15:03 Page 8

The following lemma follows easily from Lemma 8.

Lemma 9: Let i C T, and suppose i commits in q,(r). Then r > 2 and there is a set A C
T with IAI = LOW such that every j C A initiates in q(r.2).

Proof: c(q(r)) HIGH, so there is a set A C T f" C(qi(r)) with IAI = LOW. Each j E A
has w(qi(r)) > HIGH; hence, by Lemma 8, r > 2 and j initiates in qj(r-2).

The following key lemma says that whenever LOW truthtellers initiate, then all truthtellers commit

four rounds later. This is the "avalanche" described in the intuitive discussion of the algorithm.
Lemma 10: Let 0 < r < R-4. If there is a set A C T, IAI = LOW, such that all i C A

initiate in qi(r), then all j E T commit in qi(r + 4).

Proof: Let r' be the least number such that all i E A initiate in qi(r'). By Lemma 3, A C
C(q(r' + 2)) for all j E T. We now argue that i initiates in qi(r' + 2)). It will then follow by
Lemma 4 that i commits in q (r' + 4), and hence also in qi(r + 4) by Lemma 2.

If r' = 0, then c(q,(r' + 2)) > JAI = LOW + r(r' + 2)/21 - 1. Thus, j initiates in qi(r' + 2) by

Rule 12. If r' > 0, then there is some k E A such that k initiates in qk(r') and k does not
initiate in qk(r'-l). Then k initiates in qk(r') using Rule 12, so c(qk(r'))> LOW + rr'/21-1. If
k E C(q(r')), then Lemma 8 implies that k initiates in q (r'- 2), a contradiction (using Lemma
2). Thus, k 4 C(qk(r')). By Lemmas 2 and 6, C(qi(r' + 2)) ) C(qk(r')) for all j E T. By Lemma
3, k E C(q.(r' + 2)). Hence, c(q.(r' + 2)) > LOW + rr'/21 = LOW + r(r' + 2)/2 1- 1. Thus, I
initiates in qi(r' + 2) by Rule 12 as desired.

We are now ready to prove the properties required for Theorem 1 - agreement and validity.

Lemma 11: If any i C T commits in qi(R), then all j E T commit in qI(R).

Proof: Assume i E T commits in q,(R). By Lemma 9, there is a set A C T with IAI =

LOW such that every j E A initiates in q,(R.2).

We consider two cases. First, assume all j E A Initiate in qj(R.4). In this case, Lemma
10 implies the result. Second, assume that some i E A initiates in qi(r) but not in q (r-1), for
some r E {R-3,R-2). Then j initiates by 12. Then c(q,(r)) > LOW + rr/21-1 L> LOW + t:
HIGH, so j commits in qi(r). Then Lemmas 7 and 2 imply the result.

Dl
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Lemma 12: Let i C T.

(a) If v = 0, then qi(R) 4 Fi.

(b) If v = 1, then qi(R) E Fi.

Proof: (a) v = 0. Suppose i commits in q1(R). Then by Lemma 9, there is an element j

E T that initiates in qi(R-2). Consider the least r for which some j E T initiates in q (r).

Clearly r > 0 by the initial conditions. Hence, j initiates by Rule 12, so c(qj(r)) > LOW. Thus,

there is a k E T l c(q.(r)), so wk(qi(r))> HIGH. But then it follows from Lemma NANCY7

that k initiates in qk(r-2 ), contradicting the choice of r. We conclude that q1(R) 4 Fi.

(b) v = 1. Each i E T initiates in q1(0) by Rule I1. By Lemma 4, each i E T commits in

qj(2). Thus, qi (R) E Fl.
,1]

0

6. Complexity Analysis

Since Ill = N + 1, each message item can be encoded by O(log N) bits, and a message mI consisting of k message items can be encoded in length O(k log N). The algorithm of the previous

section sends N2 messages on each rornd, and each message potentially contains N + 1 message

items; hence an upper bound on the number of message bits sent is Q(N 2 R (N + 1) log N) =

O(t4 log t). (The log factor can be elimiinated by a bitwise encoding of the entire message.)

A minor modification of the algorithm however results in a saving of the factor of R. The algorithm

is monotone in the sense that data entities are never deleted from the data part of the state, and
incoming messages have no effect except to be added into the state. Thus, the algorithm would

operate exactly the same if each message item were sent from i to j only once. The only change to the

algorithm would be that each process would have to remember in its state which messages had

previously been sent out and to whom, and to omit sending a previously-sent message. The result is

that each process i would send a maximum of III message items to each process j during the entire

course of the algorithm. The total number of message bits then would be

O(N2 (N + 1) log N) = O(t3 log t).

Combining the ideas of the previous paragraph with those of Section 3, we obtain:

Theorem 13: There is an algorithm which solves the Byzantine Generals problem for t

unreliable processes out of a total of N > 3t + 1, uses 2t+ 5 rounds of information

exchange, and sends O(t 3 log t + tN) message bits.
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